Abstract

Finite-time stability of a class of fractional-order complex-valued memristor-based neural networks with both leakage and time-varying delays is investigated in this paper. By employing the set-valued map and differential inclusions, the solutions of memristor-based systems are intended in Filippov’s sense. Via using Hölder inequality, Gronwall–Bellman inequality and inequality scaling skills, sufficient conditions to guarantee the stability of the system are derived when 0<α<12 and 12≤α≤1, respectively. Finally, two numerical examples are designed to illustrate the validity and feasibility of the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.