Abstract

For all $\epsilon>0$, we prove the existence of finite-energy strong solutions to the axi-symmetric $3D$ Euler equations on the domains $ \{(x,y,z)\in\mathbb{R}^3: (1+\epsilon|z|)^2\leq x^2+y^2\}$ which become singular in finite time. We further show that solutions with 0 swirl are necessarily globally regular. The proof of singularity formation relies on the use of approximate solutions at exactly the critical regularity level which satisfy a $1D$ system which has solutions which blow-up in finite time. The construction bears similarity to our previous result on the Boussinesq system \cite{EJB} though a number of modifications must be made due to anisotropy and since our domains are not scale-invariant. This seems to be the first construction of singularity formation for finite-energy strong solutions to the actual $3D$ Euler system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.