Abstract
In this paper, the initial-boundary value problem of the multidimensional compressible Euler equations with time-dependent damping in radial symmetry is considered. It is shown that finite-time singularity will be developed for the solutions of the compressible Euler equations with time-dependent damping coefficients if the initial value of a newly introduced functional, with a time-dependent parameter is sufficiently large. The blowup conditions imply that the initial kinetic energy of the fluid must not be less than a given constant.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.