Abstract

Abstract Lagrangian coherent structures are effective barriers, sticky regions, that separate chaotic phase space regions of different dynamical behavior. The usual way to detect such structures is by calculating finite-time Lyapunov exponents. We show that similar results can be obtained for time-periodic systems by calculating finite-time rotation numbers, which are faster to compute. We illustrate our claim by considering examples of continuous- and discrete-time dynamical systems of physical interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.