Abstract

The tracking control is investigated for a class of uncertain strict-feedback systems with robust design and learning systems. Using the switching mechanism, the states will be driven back by the robust design when they run out of the region of adaptive control. The adaptive design is working to achieve precise adaptation and higher tracking precision in the neural working domain, while the finite-time robust design is developed to make the system stable outside. To achieve good tracking performance, the novel prediction error-based adaptive law is constructed by considering the estimation performance. Furthermore, the output constraint is achieved by imbedding the barrier Lyapunov function-based design. The finite-time convergence and the uniformly ultimate boundedness of the system signal can be guaranteed. Simulation studies show that the proposed approach presents robustness and adaptation to system uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.