Abstract
We proposed the finite-time cycle model of a measurement-based quantum cooler, where the invasive measurement provides the power to drive the cooling cycle. Such a cooler may be regarded as an alternative thought experiment of Maxwell’s demon. The measurement-feedback information is capable of moving heat from the cold to hot bath without any work input and even making the maximum coefficient of performance larger than the Carnot limit. The causes that this seemingly paradoxical result does not violate the laws of thermodynamics can be clearly explained through the derivation of a generalized Clausius inequality including the mutual information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.