Abstract

This paper mainly investigates the finite-time projective synchronization problem of memristor-based delay fractional-order neural networks (MDFNNs). By using the definition of finite-time projective synchronization, combined with the memristor model, set-valued map and differential inclusion theory, Gronwall–Bellman integral inequality and Volterra-integral equation, the finite-time projective of MDFNNs is achieved via the linear feedback controller. Novel sufficient conditions are obtained to guarantee the finite-time projective synchronization of the drive-response MDFNNs. Besides, we also analyze the feasible region of the settling time. Finally, two numerical examples are given to show the effectiveness of the proposed results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.