Abstract

The position tracking control problem of a hydraulic manipulator system is investigated. By utilizing homogeneity theory, a finite-time output feedback controller is designed. Firstly, a finite-time state feedback controller is developed based on homogeneity theory. Secondly, a nonlinear state observer is designed to estimate the manipulator’s velocity. A rigorous analysis process is presented to demonstrate the observer’s finite-time stability. Finally, the corresponding output feedback tracking controller is derived, which stabilizes the tracking error system in finite time. Simulations demonstrate the effectiveness of the designed finite-time output feedback controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.