Abstract

This paper investigates the problem of finite-time stability and finite-time [Formula: see text] stabilization for switched systems with parametric uncertainties and nonlinear disturbances satisfying Lipschitz condition. The dynamic quantization inputs feedback control technology is proposed to utilize quantized input measurements which can significantly reduce the communication burden. Sufficient conditions in terms of linear matrix inequality (LMIs) are presented through applying Lyapunov function method and average dwell approach to ensure the finite-time stability of the switched system. By analysing the feasibility of LMIs’ solution, the feedback gain matrix and the dynamic quantization parameter are obtained. In addition, more constraints are proposed to ensure the finite-time stabilization with a prescribed [Formula: see text] performance index with respect to nonlinear disturbances, and the Lipschitz constant matrix of Lipschitz condition is not required to be known in advance. Finally, with the application to the proposed control of a numerical example and a two-stage chemical reactor system, the validity of the conclusion is verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.