Abstract
In the quest for unparalleled reliability and robustness within control systems, significant attention has been directed toward mitigating actuator faults in diverse applications, from space vehicles to sophisticated industrial systems. Despite these advances, the prevalent assumption of homogeneous actuator faults remains a stark simplification, failing to encapsulate the stochastic and unpredictable nature of real-world operational environments. The problem of finite-time fault-tolerant control for nonlinear flexible spacecraft systems with actuator faults is addressed in this paper, utilizing the T-S fuzzy framework. In a departure from conventional approaches, actuator failures are modeled as random signals following a nonhomogeneous Markov process, thus comprehensively addressing the issue of timeliness, which has previously been overlooked in the literature. To effectively manage the intricacies introduced by these factors, the nonhomogeneous Markov process is represented as a polytope set. The proposed solution involves the development of a nonhomogeneous matrix transformation, accompanied by the introduction of adaptable parameters. This innovative controller design methodology yields a stability criterion that ensures H∞ performance in a mean-square sense. To empirically substantiate the effectiveness and advantages of the proposed approaches, a numerical example featuring a nonlinear spacecraft system is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.