Abstract

This work offers the solution at the control feed-back level of the accurate trajectory tracking subject to finite-time convergence. Dynamic equations of a rigid robotic manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory. Based on the suitably defined non-singular terminal sliding vector variable and the Lyapunov stability theory, we propose a class of absolutely continuous robust controllers which seem to be effective in counteracting both uncertain dynamics and unbounded disturbances. The numerical simulation results carried out for a robotic manipulator consisting of two revolute kinematic pairs operating in a two-dimensional joint space illustrate performance of the proposed controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.