Abstract

This work studies the finite-time control problem for discrete-time nonlinear Markov switching linear parameter varying (LPV) systems with denial-of-service (DoS) attacks. The aperiodic DoS attacks are introduced into the systems with partially unknown transition probabilities. First, considering the characteristics of aperiodic DoS attacks, an appropriate feedback controller is designed according to that whether it is attacked or not. Furthermore, the finite-time stability criteria of closed-loop system are derived by means of iterative technique and multiple Lyapunov functions. Finally, a turbofan engine model is taken as an example to verify the effectiveness and feasibility of the proposed finite-time control method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.