Abstract

This paper studies the distributed finite-time containment control for a group of mobile agents modeled by double-integrator dynamics under multiple dynamic leaders with bounded unknown acceleration inputs. A class of distributed finite-time containment protocols is proposed without relying velocity and acceleration measurements. This kind of protocols can drive the states of the followers to track the convex hull spanned by those of the leaders in finite time under the constraint that the leaders’ acceleration inputs are unknown but bounded for all the followers. Further, by computing the value of the Lyapunov function at the initial point, the finite settling time can also be theoretically estimated for the second-order finite-time containment control problems. Finally, the effectiveness of the results is illustrated by numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.