Abstract

The finite-time consensus fault-tolerant control (FTC) tracking problem is studied for the nonlinear multi-agent systems (MASs) in the nonstrict feedback form. The MASs are subject to unknown symmetric output dead zones, actuator bias and gain faults, and unknown control coefficients. According to the properties of the neural network (NN), the unstructured uncertainties problem is solved. The Nussbaum function is used to address the output dead zones and unknown control directions problems. By introducing an arbitrarily small positive number, the "singularity" problem caused by combining the finite-time control and backstepping design is solved. According to the backstepping design and Lyapunov stability theory, a finite-time adaptive NN FTC controller is obtained, which guarantees that the tracking error converges to a small neighborhood of zero in a finite time, and all signals in the closed-loop system are bounded. Finally, the effectiveness of the proposed method is illustrated via a physical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.