Abstract

This paper investigates nonsingular terminal sliding mode control for a class of uncertain systems with nonlinear inputs and its application in chaos control. When some of the system states are finite-time stable, the nonlinear items that coupled with these states may come into zeros in other subsystems. This will simplify the stability analysis of the whole system greatly. Compared with the traditional finite-time stabilization design method, the introduction of the terminal sliding mode can reduce the input dimensions. Only one control input is requested to realize chaos control of the Liu system when unmatched uncertainties and input nonlinearity coexist. The parameter matrices in the TSM can be determined through the solution of LMIS. Simulation results are given to demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.