Abstract

In order to deal with the problem of attitude tracking control for quadrotors subject to time-varying inertia and external disturbances, a finite-time bounded switched linear parameter-varying (LPV) control method is presented. The attitude dynamics is described by two subsystems, where the inner angular-velocity system is used to track the desired angular velocities that are generated by the outer attitude-angle system. The angular-velocity system of quadrotors is modeled as a switched LPV model, where a family of linear models is developed to approximate the original nonlinear system and the LPV method is applied to model the time-varying inertia. Specially, a mode-dependent persistent dwell-time (MPDT) switching logic, which is more general than the typically used dwell-time (DT) or average dwell-time (ADT) switching logic, is adopted to govern the switching behaviors among these linear models. A state-feedback controller for the switched LPV error-tracking system is designed, which ensures both finite-time boundedness and extended dissipative performance. Finally, the developed theoretical results are verified by numerical simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.