Abstract
We show the finite time blow up of a solution to the Cauchy problem of a drift-diffusion equation of a parabolic-elliptic type in higher space dimensions. If the initial data satisfies a certain condition involving the entropy functional, then the corresponding solution to the equation does not exist globally in time and blows up in a finite time for the scaling critical space. Besides there exists a concentration point such that the solution exhibits the concentration in the critical norm. This type of blow up was observed in the scaling critical two dimensions. The proof is based on the profile decomposition and the Shannon inequality in the weighted space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.