Abstract
The extended state observer (ESO) has been widely used in the state and perturbation estimation of the electro-hydraulic servo system. It was found that there was a controlled quantity in the transfer function between the perturbation estimation value and the disturbance. This indicates that the traditional linear ESO’s estimation of the disturbance is affected by the change in the control input. To solve this problem, a new structure ESO for a hydraulic system (LHYESO) was designed by introducing the hydraulic system’s load pressure and system model. The corresponding frequency domain analysis results show that it eliminates the control input in the transfer function and reduces the dependence of the high-frequency domain range of the perturbation estimation on the significant observer gain. To improve the estimation speed, a finite-time convergent ESO for hydraulic systems (FTHYESO) was proposed based on the structure of LHYESO, and it was proved that the observation error converged to a sufficiently small value during a finite time. Moreover, a finite-time backstepping controller has been designed by using the Lyapunov method to guarantee the rapidity and precise response of the hydraulic servo system. Finally, the experiment results show the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.