Abstract

A practical finite-temperature theory is developed for the superfluid regime of a weakly interacting Bose gas in an optical lattice with additional harmonic confinement. We derive an extended Bose-Hubbard model that is valid for shallow lattices and when excited bands are occupied. Using the Hartree-Fock-Bogoliubov-Popov mean-field approach, and applying local-density and coarse-grained envelope approximations, we arrive at a theory that can be numerically implemented accurately and efficiently. We present results for a three-dimensional system, characterizing the importance of the features of the extended Bose-Hubbard model and compare against other theoretical results and show an improved agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.