Abstract

Confinement may be more easily demonstrated at finite temperature using the Polyakov loop than at zero temperature using the Wilson loop. A natural mechanism for confinement can arise via the coupling of the adjoint Polyakov loop to F_{mu nu}^2. We demonstrate this mechanism with a one-loop calculation of the effective potential for SU(2) gluons in a background field consisting of a non-zero color magnetic field and a non-trivial Polyakov loop. The color magnetic field drives the Polyakov loop to non-trivial behavior, and the Polyakov loop can remove the well-known tachyonic mode associated with the Saviddy vacuum. Minimizing the real part of the effective potential leads to confinement, as determined by the Polyakov loop. Unfortunately, we cannot arrange for simultaneous stability and confinement for this simple class of field configurations. We show for a large class of abelian background fields that at one loop tachyonic modes are necessary for confinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call