Abstract

The thermodynamics of an ideal relativistic quantum gas in expansion is studied. It is found that only for conformally invariant fields in conformally static spacetime can thermal equilibrium be strictly maintained. A finite temperature theory can be defined under the condition of quasi equilibrium when the background expansion is nearly adiabatic. The high temperature expansion of the energy density for massive nonconformal fields in Robertson-Walker universes and for conformal fields in Bianchi Type-I universes are calculated. The importance of these results on phase transition and quantum processes in the early universe is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call