Abstract
Infrared spectra of biomolecules are obtained from molecular dynamics simulations at finite temperature using the AMOEBA force field. Diverse examples are presented such as N-methylacetamide and its derivatives and a helical peptide. The computed spectra from polarizable molecular dynamics are compared in each case to experimental ones at various temperatures. The role of high-level electrostatic treatment and explicit polarization, including parameters improvements, is highlighted for obtaining spectral sensitivity to the environment including hydrogen bonds and water molecules and a better understanding of the observed experimental bands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.