Abstract

We consider the system of N one-dimensional free fermions confined by a harmonic well V(x)=mω(2)x(2)/2 at finite inverse temperature β=1/T. The average density of fermions ρ(N)(x,T) at position x is derived. For N≫1 and β∼O(1/N), ρ(N)(x,T) is given by a scaling function interpolating between a Gaussian at high temperature, for β≪1/N, and the Wigner semicircle law at low temperature, for β≫N(-1). In the latter regime, we unveil a scaling limit, for βℏω=bN(-1/3), where the fluctuations close to the edge of the support, at x∼±√[2ℏN/(mω)], are described by a limiting kernel K(b)(ff)(s,s') that depends continuously on b and is a generalization of the Airy kernel, found in the Gaussian unitary ensemble of random matrices. Remarkably, exactly the same kernel K(b)(ff)(s,s') arises in the exact solution of the Kardar-Parisi-Zhang equation in 1+1 dimensions at finite time t, with the correspondence t=b(3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.