Abstract

Using resent independent results from QCD sum rules for the thermal evolution of hadronic parameters in the vector and the axial-vector channels, we discuss the saturation of the two Weinberg sum rules. It turn out that both sum rules are quite well satisfied in a wide range from T = 0 up to T/Tc ≃ 0.7 — 0.8. At higher temperatures, coming closer to Tc, there is an asymmetry between both channels since in the vector case there is a leading order effect, proportional to T2, due to a one loop pion contribution in the space-like region, which is absent in the axial-vector case. This leads then to a small deviation. More important, though, in this region the QCD sum rules for the hadronic parameters begin to have no solutions since the widths of the ρ and the a1-mesons diverge signaling the occurrence of deconfinement. Close to and at Tc there are no pions left in the medium and chiral symmetry is restored so that the Weinberg sum rules are trivially satisfied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.