Abstract

During the last three decades, nonstandard statistics for indistinguishable quantum particles has attracted wide attention and research interests from many institutions. Among these new types of statistics, the [Formula: see text]-deformed Bose and Fermi statistics, originated from the study of quantum algebra, are being applied in more and more physical systems. In this paper, we construct a [Formula: see text]-deformed generalization of the BCS-Leggett theory for ultracold Fermi gases based on our previously constructed [Formula: see text]-deformed BCS theory. Some interesting features of this [Formula: see text]-deformed interacting quantum gas are obtained by numerical analysis. For example, in the ordinary Bose–Einstein Condensation regime, the gas presents a fermionic feature instead of bosonic feature if the deformation parameter is tuned suitably, which might be referred to as the [Formula: see text]-induced “Bose–Fermi” crossover. Conversely, a weak sign of the “Fermi–Bose” crossover is also found in the ordinary weak fermionic regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call