Abstract

SummaryA stabilized discontinuous Galerkin method is developed for general hyperelastic materials at finite strains. Starting from a mixed method incorporating Lagrange multipliers along the interface, the displacement formulation is systematically derived through a variational multiscale approach whereby the numerical fine scales are modeled via edge bubble functions. Analytical expressions that are free from user‐defined parameters arise for the weighted numerical flux and stability tensor. In particular, the specific form taken by these derived quantities naturally accounts for evolving geometric nonlinearity as well as discontinuous material properties. The method is applicable both to problems containing nonconforming meshes or different element types at specific interfaces and to problems consisting of fully discontinuous numerical approximations. Representative numerical tests involving large strains and rotations are performed to confirm the robustness of the method. Copyright © 2015 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.