Abstract

We consider a formulation of associative isotropic J2-elastoplasticity at finite inelastic strains and aspects of its numerical implementation. The essential ingredients include the multiplicative decomposition of the deformation gradient in elastic and inelastic parts, the definition of a convex elastic domain in stress space and a material representation of the constitutive equations for general non-Cartesian coordinate charts. On the numerical side we propose a stress update algorithm for elasto-plastic response, including isotropic hardening. The finite element formulation is based on assumed strain and enhanced strain variational principles, for a complete outline see [3]. Remarkably the formulation is very similar to the case of infinitesimal plasticity: (i) The scheme of linear return mapping algorithm takes the form of standard return mapping of the infinitesimal theory for the case of isotropic elastic response. (ii) The algorithmic elastoplastic moduli have a similar structure as in the linear case. Together with an exact fulfillment of plastic incompressibility by means of a simple correction one achieves an advantageously efficient finite element formulation. Its performance is documented by a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.