Abstract

Starting from the general expression of the free-energy function of a saturated porous medium at finite deformations in the case of compressible fluid and solid constituents, and from the internal dissipation increment, the general expressions of the plastic potential and flow rule are deduced together with the general form of the consistency condition. Reference is made to an elementary volume moving with the solid skeleton in a Lagrangian description, which is treated as an open system from which the pore fluid can flow freely in and out. As a result, a generalisation is provided of the classical Prandtl–Reuss relationship of small strain elastoplasticity in single-phase media to finite strain multiplicative (for F ) and additive (for the fluid mass content) elastoplasticity in saturated porous media with compressible constituents. The following particular cases are analysed in detail: null plastic volume change of the solid constituent, incompressibility of the solid constituent, incompressibility of both fluid and solid constituents, quasi-linear theory (in which the solid constituent is assumed to be nearly incompressible, and therefore undergoing small volume changes), and geometrically linearised theory. The simplified approaches previously presented in the literature are thus recovered within a unified framework and new, simplified constitutive assumptions are made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.