Abstract
An appropriate strain energy density for an isotropic hyperelastic Hookean material is proposed for finite strain from which a constitutive relationship is derived and applied to problems involving beam theory approximations. The physical Lagrangian stress normal to the surfaces of a element in the deformed state is a function of the normal component of stretch while the shear is a function of the shear component of stretch. This paper attempts to make a contribution to the controversy about who is correct, Engesser or Haringx with regard to the buckling formula for a linear elastic straight prismatic column with Timoshenko beam-type shear deformations. The derived buckling formula for a straight prismatic column including shear and axial deformations agrees with Haringx’s formula. Elastica-type equations are also derived for a three-dimensional Timoshenko beam with warping excluded. When the formulation is applied to the problem of pure torsion of a cylinder no second-order axial shortening associated with the Wagner effect is predicted which differs from conventional beam theory. When warping is included, axial shortening is predicted but the formula differs from conventional beam theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.