Abstract

The finite-state Markov channel (FSMC), where the channel transition probability is controlled by a state undergoing a Markov process, is a useful model for the mobile wireless communication channel. In this paper, we investigate the security issue in the mobile wireless communication systems by considering the FSMC with an eavesdropper, which we call the finite-state Markov wiretap channel (FSM-WC). We assume that the state is perfectly known by the legitimate receiver and the eavesdropper, and through a noiseless feedback channel, the legitimate receiver sends his received channel output and the state back to the transmitter after some time delay. Inner and outer bounds on the capacity-equivocation regions of the FSM-WC with delayed state feedback and with or without delayed channel output feedback are provided in this paper, and we show that these bounds meet if the eavesdropper’s received symbol is a degraded version of the legitimate receiver’s. The above-mentioned results are further explained via a degraded Gaussian fading example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.