Abstract
Finite-grid (or aliasing) instabilities are pervasive in particle-in-cell (PIC) plasma simulation algorithms, and force the modeler to resolve the smallest (Debye) length scale in the problem regardless of dynamical relevance. These instabilities originate in the aliasing of interpolation errors between mesh quantities and particles (which live in the space–time continuum). Recently, strictly energy-conserving PIC (EC-PIC) algorithms have been developed that promise enhanced robustness against aliasing instabilities. In this study, we confirm by analysis that EC-PIC is stable against aliasing instabilities for stationary plasmas. For drifting plasmas, we demonstrate by analysis and numerical experiments that, while EC-PIC algorithms are not free from these instabilities in principle, they feature a benign stability threshold for finite-temperature plasmas that make them usable in practice for a large class of problems (featuring ambipolarity and realistic ion-electron mass ratios) without the need to consider the size of the Debye length. We also demonstrate that this threshold is absent for the popular momentum-conserving PIC algorithms, which are therefore unstable for both drifting and stationary plasmas beyond a threshold in cell size compared to Debye length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.