Abstract

Continuous-variable quantum key distribution (CV-QKD) has many practical advantages including compatibility with current optical communication technology. Implementation using heterodyne measurements is particularly attractive since it eliminates the need for active phase locking of the remote pair of local oscillators, but the full security of CV QKD with discrete modulation was only proved for a protocol using homodyne measurements. Here we propose an all-heterodyne CV-QKD protocol with binary modulation and prove its security against general attacks in the finite-key regime. Although replacing a homodyne measurement with a heterodyne measurement would be naively expected to incur a 3-dB penalty in the rate-distance curve, our proof achieves a key rate with only a 1-dB penalty.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.