Abstract
With the damage spreading method, scaling properties of the damage distance on the Ising model with heat bath dynamics are studied numerically. With the parallel flipping scheme, the scaling curves fall on two curves, which depend on the odd or even lattice sizes. The both scaling curves give the consistent dynamical exponent as z = 2.16±0.04 for d = 2 and z = 2.09±0.05 for d = 3, respectively. By shifting one of them, two curves overlap each other perfectly. Meanwhile, all the scaling curves obtained by single-spin flipping processes (with different odd or even lattice sizes) fall on a single curve, from which the consistent dynamical critical exponent with the parallel scheme is obtained z = 2.18±0.02 for d = 2 and z = 2.08±0.04 for d = 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.