Abstract

The majority-voter model is studied by Monte Carlo simulations on hypercubic lattices of dimension d = 2 to 7 with periodic boundary conditions. The critical exponents associated to the finite-size scaling of the magnetic susceptibility are shown to be compatible with those of the Ising model. At dimension d = 4, the numerical data are compatible with the presence of multiplicative logarithmic corrections. For d ≥ 5, the estimates of the exponents are close to the prediction d/2 when taking into account the dangerous irrelevant variable at the Gaussian fixed point. Moreover, the universal values of the Binder cumulant are also compatible with those of the Ising model. This indicates that the upper critical dimension of the majority-voter model is not dc = 6 as claimed in the literature, but dc = 4 like the equilibrium Ising model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.