Abstract

We derive exact results for several thermodynamic quantities of the O ( n ) symmetric field theory in the limit in a finite d-dimensional hypercubic geometry with periodic boundary conditions. Corresponding results are derived for an O ( n ) symmetric model on a finite d-dimensional lattice with a finite-range interaction. The leading finite-size effects near Tc of the field-theoretic model are compared with those of the lattice model. For 2 < d < 4, the finite-size scaling functions are verified to be universal. For d > 4, significant lattice effects are found. Finite-size scaling in its usual simple form does not hold for d > 4 but remains valid in a generalized form with two reference lengths. The finite-size scaling functions of the field theory turn out to be nonuniversal whereas those of the lattice model are independent of the nonuniversal model parameters. In particular, the field-theoretic model exhibits finite-size effects whose leading exponents differ from those of the lattice model. The widely accepted lowest-mode approach is shown to fail for both the field-theoretic and the lattice model above four dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.