Abstract
We investigate the critical behavior of a stochastic lattice model describing a General Epidemic Process. By means of a Monte Carlo procedure, we simulate the model on a regular square lattice and follow the spreading of an epidemic process with immunization. A finite size scaling analysis is employed to determine the critical point as well as some critical exponents. We show that the usual scaling analysis of the order parameter moment ratio does not provide an accurate estimate of the critical point. Precise estimates of the critical quantities are obtained from data of the order parameter variation rate and its fluctuations. Our numerical results corroborate that this model belongs to the dynamic isotropic percolation universality class. We also check the validity of the hyperscaling relation and present data collapse curves which reinforce the accuracy of the estimated critical parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.