Abstract

The relationship between magnetic properties and microstructure of thin antiferromagnetic CoO layers in {CoO(X)/SiO 2 (50 A)} 2 5 multilayers has been investigated. The temperature decay of the thermoremanent moment, zero-field-cooled/field-cooled magnetization measurements, and specific heat were evaluated as indicators of the magnetic ordering temperature. The temperatures associated with each decreased slightly with decreasing CoO layer thickness from 100 to 30 A, but then exhibited a sharp decrease for CoO layer thickness below 20 A. This decrease has been previously observed, and was attributed to intrinsic finite size effects associated with broken magnetic bonds at the surfaces. In the present investigation, it was determined that the CoO layer was amorphous in these thinner layers, accounting for the dramatic drop in Neel temperature. For thicker CoO layers, all measures of magnetic ordering coincide, indicating a true Neel temperature, whereas they do not for the thinner films. The structural change of CoO from crystalline to amorphous also causes a significant change in the temperature dependence of the magnetization, due to an increased number of weakly coupled uncompensated spins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.