Abstract

We study the finite-size effects, like the surface and Coulomb energies, on the hadron-quark mixed phase in neutron stars. The equilibrium conditions for coexisting hadronic and quark phases are derived by minimizing the total energy including the surface and Coulomb contributions, which are different from the Gibbs conditions without finite-size effects. We employ the relativistic mean-field model to describe the hadronic phase, while the Nambu-Jona-Lasinio model with vector interactions is used for the quark phase. It is found that finite-size effects can significantly reduce the region of the mixed phase, and the results lie between those of the Gibbs and Maxwell constructions. We show that a massive star may contain a mixed-phase core and its size depends on the surface tension of the hadron-quark interface and the vector coupling between quarks. The repulsive vector interaction in the Nambu-Jona-Lasinio model can stiffen the equation of state of quark matter, and therefore, delay the phase transition and increase the maximum mass of neutron stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.