Abstract

Finite-size effects in the static structure factor S(k) are analyzed for an amorphous substance. As the number of particles is reduced, S(0) increases greatly, up to an order of magnitude. Meanwhile, there is a decrease in the height of the first peak S_{peak}. These finite-size effects are modeled accurately by the Binder formula for S(0) and our empirical formula for S_{peak}. Procedures are suggested to correct for finite-size effects in S(k) data and in the hyperuniformity index H≡S(0)/S_{peak}. These principles generally apply to S(k) obtained from particle positions in noncrystalline substances. The amorphous substance we simulate is a two-dimensional liquid, with a soft Yukawa interaction modeling a dusty plasma experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.