Abstract

AbstractEpitaxially strain‐engineered tetragonal (T)‐like BiFeO3 (BFO) is a multiferroic material with unique crystallographic and physical properties compared to its bulk rhombohedral parent. While the effect of this structural change on ferroelectric properties is understood, the influence on correlated antiferromagnetic (AFM) properties, especially with reduced film thickness, is less clear. Here, the AFM behavior of T‐like BFO films 9–58 nm thick on LaAlO3 (001) substrates fabricated by pulsed laser deposition was studied using conversion electron Mössbauer spectroscopy and X‐ray diffraction. The key findings include: i) Ultrathin T‐like BFO films (<10 nm) show a decoupling of magnetic and structural transitions, with the polar vector tilted 32 degrees from [001] in 9–13 nm films. ii) Films thinner than 13 nm exhibit no structural transition down to 150 K, with a Néel (TN) transition at ≈290 K, ≈35 K lower than thicker films. Interestingly, the TN scaling with thickness suggests realistic scaling exponents considering a critical correlation length for C‐type AFM order, rather than G‐type. The results show that finite size effects can tailor transition temperatures and modulate AFM wave modes in antiferromagnetic oxides, with implications for AFM spintronics for future information technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.