Abstract

A new analytical approach is used in the design of disc-like gradient coils suitable for magnet geometries with main field direction perpendicular to the surface of the disc. An inverse procedure is used to optimize the coil’s characteristics, subject to the restrictions imposed by the desired field behavior over a certain set of constraint points inside a predetermined imaging volume. Excellent agreement between the expected values of the gradient magnetic field and the numerical values generated by applying the Biot-Savart law to a discrete current pattern of the perspective disc coil was found. A Finite Element Analysis package was used to predict the fringe gradient field levels for a non-shielded axial disc coil and for a self-shielded transverse disc coil in the vicinity of the magnet poles. The numerical results indicate that for the self-shielded design the gradient fringe field is 1000 times smaller than the corresponding fringe field for the non-shielded disc case. Also no significant spatial dependence was noticed for the shielded coil’s fringe field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.