Abstract

AbstractA fundamental question in random matrix theory is to quantify the optimal rate of convergence to universal laws. We take up this problem for the Laguerre β ensemble, characterized by the Dyson parameter β, and the Laguerre weight , in the hard edge limit. The latter relates to the eigenvalues in the vicinity of the origin in the scaled variable . Previous work has established the corresponding functional form of various statistical quantities—for example, the distribution of the smallest eigenvalue, provided that . We show, using the theory of multidimensional hypergeometric functions based on Jack polynomials, that with the modified hard edge scaling , the rate of convergence to the limiting distribution is , which is optimal. In the case , general the explicit functional form of the distribution of the smallest eigenvalue at this order can be computed, as it can for and general . An iterative scheme is presented to numerically approximate the functional form for general .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call