Abstract
We analyze the complex phenomenology of the nonclassical rotational inertia (NCRI) observed at low temperature in solid 4He within the context of a two-dimensional Berezinskii-Kosterlitz-Thouless transition in a premelted 4He film at the grain boundaries. We show that both the temperature and 3He doping dependence of the NCRI fraction (NCRIF) can be ascribed to finite size effects induced by the finite grain size. We give an estimate of the average size of the grains which we argue to be limited by the isotopic 3He impurities and we provide a simple power-law relation between the NCRIF and the 3He concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.