Abstract

This paper proposes a voltage-limited finite-settling-step direct torque and flux control (FSS-DTFC) method with a constant switching frequency for torque-controlled interior permanent-magnet synchronous motors (IPMSMs). The proposed control law dynamically scales the voltage vectors on the hexagonal voltage boundary to ensure the maximum torque capabilities under the given operating conditions while simultaneously regulating the stator flux linkage magnitude under flux-weakening operation. Instead of relying on classical overmodulation methods at voltage limits, this paper developed two independent voltage truncation rules to facilitate the possible voltage vector choices. The analytical solution led to the dynamic voltage modification at each time step with respect to the available inverter voltage. The voltage-limited FSS-DTFC approach has potential advantages in achieving a fast transient torque trajectory and direct manipulation of the stator flux linkage while exploiting the maximum voltage excitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call