Abstract

This paper presents a finite-set model predictive power control (FS-MPPC) method for the brushless doubly fed twin stator induction generator (BDFTSIG) in variable speed constant frequency generation applications. The FS-MPPC controller is developed in a general reference frame from which all other reference frames can be deduced readily. The invariant feature of the predictive power model in various reference frames contributes to the reference frame-free characteristic of the developed FS-MPPC controller, enabling its application more flexible and universal. Besides, the arduous process of control winding flux estimation is avoided in the FS-MPPC controller by choosing state variables that are easy to be obtained. Moreover, the influence of rotor circuit that has long been neglected in the existing controllers for the brushless doubly fed induction machines is embedded within the predictive power model and inherently considered in the FS-MPPC controller, which contributes to accurate power control of the BDFTSIG. Furthermore, the feasibility and effectiveness of the developed FS-MPPC controller regarding different power levels and grid fault conditions are briefly discussed. Finally, numerical simulations and experimental tests are carried out, which demonstrates the effectiveness of the developed FS-MPPC controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.