Abstract

Multifractal analysis has become a standard signal processing tool,for which a promising new formulation, the p-leader multifractal formalism, has recently been proposed. It relies on novel multiscale quantities, the p-leaders, defined as local l^p norms of sets of wavelet coefficients located at infinitely many fine scales. Computing such infinite sums from actual finite-resolution data requires truncations to the finest available scale, which results in biased p-leaders and thus in inaccurate estimates of multifractal properties. A systematic study of such finite-resolution effects leads to conjecture an explicit and universal closed-form correction that permits an accurate estimation of scaling exponents. This conjecture is formulated from the theoretical study of a particular class of models for multifractal processes, the wavelet-based cascades. The relevance and generality of the proposed conjecture is assessed by numerical simulations conducted over a large variety of multifractal processes. Finally, the relevance of the proposed corrected estimators is demonstrated on the analysis of heart rate variability data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call