Abstract
AbstractThe representation of Cantor minimal systems by Bratteli–Vershik diagrams has been extensively used to study particular aspects of their dynamics. A main role has been played by the symbolic factors induced by the way vertices of a fixed level of the diagram are visited by the dynamics. The main result of this paper states that Cantor minimal systems that can be represented by Bratteli–Vershik diagrams with a uniformly bounded number of vertices at each level (called finite-rank systems) are either expansive or topologically conjugate to an odometer. More precisely, when expansive, they are topologically conjugate to one of their symbolic factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.