Abstract

This paper studies how coding theory and group theory can be used to produce information about a finite projective plane π and a collineation group G of π.A new proof for Hering's bound on |G| is given in 2.5. Using the idea of coding theory developed in [9], a relation between two rows of the incidence matrix of π with respect to a tactical decomposition is obtained in 2.1. This result yields, among other things, some techniques in calculating |G|, and generalizes a result of Roth [16], [see 2.4 and 2.5].Hering [7] introduced the notion of strong irreducibility of G, that is, G does not leave invariant any point, line, triangle or proper subplane. He showed that if in addition G contains a non-trivial perspectivity, then there is a unique minimal normal subgroup of G. This subgroup is either non-abelian simple or isomorphic to the elementary abelian group Z3 × Z3 of order 9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.