Abstract

Through parallel processing, low precision fixed point hardware can be used to build a very high speed neural network computing engine where the low precision results in a drastic reduction in system cost. The reduced silicon area required to implement a single processing unit is taken advantage of by implementing multiple processing units on a single piece of silicon and operating them in parallel. The important question which arises is how much precision is required to implement neural network algorithms on this low precision hardware. A theoretical analysis of error due to finite precision computation was undertaken to determine the necessary precision for successful forward retrieving and back-propagation learning in a multilayer perceptron. This analysis can easily be further extended to provide a general finite precision analysis technique by which most neural network algorithms under any set of hardware constraints may be evaluated.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.