Abstract

PurposeThe purpose of this paper is to present numerical study on the behaviour of 2D unsteady incompressible laminar wakes behind square cylinders.Design/methodology/approachThe numerical method that has been developed is based on a finite point formulation characterised by its weak connectivity requirements. This formulation allows for a patched unstructured approach to computational domain modelling that is of interest for industrial applications. Time evolution of pressure is computed by using a pseudo‐compressibility relaxation model that is based on physical considerations.FindingsThis model is characterised by the fact that no sub‐iterations on a numerical pseudo‐time are required so that computational efficiency is increased. Algorithm stability requires the use of second and fourth order artificial viscosity operators that effectively change the order of the equations. A discussion is included regarding the boundary conditions for these operators that do not influence vortex shedding behaviour.Research limitations/implicationsBearing in mind the industrial drive (MEMS design) that the authors have in mind, solver validation has been addressed at two levels: global coefficients (lift, drag and Strouhal number) were compared with those published in the specialised literature, while local velocity and rms profiles were compared with those obtained after performing a specific low velocity wind tunnel testing campaign (Reynolds numbers in the range from 110 to 268).Practical implicationsA sensitivity analysis of the results obtained is presented and it shows that the solver numerical robustness makes it amenable for project oriented applications.Originality/valueThe formulation being presented is competitive and could be considered as a potential alternative to other approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.